Question 1

1(e)(i)	thermal energy is released (in the reaction) / (reaction that) transfers thermal energy / (reaction that) gives out heat	1
	the energy (level) of the reactants is higher than the energy (level) of the products / the energy (level) of the ethene is higher than the energy (level) of the poly(ethene) / the energy of the products is less than the energy of the reactants	1

Question 2

2(c)(i)	Mg + Cl_2 on line on left AND Mg Cl_2 on line on right	1
	the energy of the reactants is greater than the energy of the products / the energy of the products is less than the energy of the reactants	1

Question 3

3(c)(i) S + O ₂ on left horizontal line AND SO ₂ on right horizontal line

3(c)(ii)	the energy of the reactants is greater than the energy of the product / the energy of S + O_2 is greater than the energy of SO ₂	1
3(c)(iii)	surroundings	1

Question 4

4(c)(ii)	5 (C \(\lambda_2 \) (1) releases thermal energy / releases heat	1
4(c)(i)	2 (P) (1) 5 (CL) (1)	2

Question 5

5(0	d)(i)	reaction which gives out thermal energy / reaction which releases heat	1
5(0	d)(ii)	The energy of the reactants is higher than the energy of the products / the energy of the products is lower than the energy of the reactants	1

Question 6

6(a)	coal / coke / wood	1
6(b)	L	1
6(c)	exothermic	1

Question 7

7(b)(i)	enthalpy change	1
7(b)(ii)	(the value of) ΔH is negative	1

Question 8

8(c)(ii)	M1 Bond energy in breaking bonds = [(4 × 410) + 610 + 240] = 2490 (kJ / mol)	4
	M2 Use of total E change to find bond energy of C ₂ H ₄ C l ₂ = M1 + 180 = 2490 + 180 = 2670 (kJ / mol)	
	M3 Determination of total C–C/ bond energy = M2 – [(4 × 410) + 350] = 2670 – 1990 = 680 (kJ / mol)	
	M4 Determination of each C–C1 bond energy = M3 / 2 = 680 / 2 = 340 (kJ / mol)	

Question 9

9(e)	432(1)	3
	436(1)	
	-4(1)	

Question 10

10(d)(i)	M1 horizontal line below energy level to right hand side of reactants line and labelled C ₂ H ₄ Br ₂ (1)	3
	M2 activation energy 'hump' with upward arrow labelled A from the reactants level (1)	
	M3 one downward arrow starting from the energy level of the reactants and finishing at the energy level of the products (1)	
10(d)(ii)	M1 energy needed to break bonds 4 × C–H + C=C + Br–Br = 4 × 410 + 610 + 190 = 2440 (kJ) (1)	3
	M2 energy released in making bonds 4 × C–H + C–C + 2 × C–Br = 4 × 410 + 350 + 2 × 290 = 2570 (kJ) (1)	
	M3 energy change M1 – M2 = – 130 (kJ / mol) (1)	